
Package: bridger (via r-universe)
September 15, 2024

Type Package

Title Bridge Hand Generator with Criteria Selector

Version 0.1.0

Author Jason Kaplan [aut, cre]

URL https://github.com/CommoditiesAI/bridger

Maintainer Jason Kaplan <scjase@gmail.com>

Description Produce bridge hands, allowing parameters for hands to
offer specific for bidding sequences.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.1.1

Imports cowplot, dplyr, patchwork, tibble, tidyr, magrittr, ggplot2,
ggedit, glue, gridExtra, kableExtra, pdftools, scales, stringr

SystemRequirements LaTeX(texi2dvi) must be present in the system to
create PDF reports

Depends R (>= 2.10)

Suggests spelling

Language en-US

Repository https://commoditiesai.r-universe.dev

RemoteUrl https://github.com/commoditiesai/bridger

RemoteRef HEAD

RemoteSha fd799d0a267694b19ed8519c4c01001a48750350

Contents
.onLoad . 2
bridgeHand . 3
collectHands . 4
createGraphic . 5

1

https://github.com/CommoditiesAI/bridger

2 .onLoad

find_1major . 6
find_1major_jacoby2NT . 7
find_2preempt . 7
find_3preempt . 8
find_4441 . 8
find_any . 9
find_opener . 9
find_strong . 10
find_strongNT . 10
find_weak1NT_LHObid . 11
find_weak1NT_LHOx . 11
find_weak1NT_RHObid . 12
find_weakNT . 12
printHands . 13
suitSplit . 14

Index 15

.onLoad zzz

Description

Runs on loading bridger

Usage

.onLoad(libname, pkgname)

Arguments

libname Legacy dummy

pkgname Legacy dummy

Value

No return value, called to set global variables and specify import packages

bridgeHand 3

bridgeHand bridgeHand

Description

Generate a bridge hand

Usage

bridgeHand(
handNumber = "auto",
seat = FALSE,
createGraphic = TRUE,
LTC = "original",
...

)

Arguments

handNumber An integer for generating a hand, or "auto" to use a random number generator

seat If not false, makes the specified seat South and dealer, so all bidding starts with
South and the specified hand type

createGraphic Whether the graphic should be created

LTC Whether to include losing trick count - FALSE for none, "original" or "new" for
schema

... Other parameters used in hand evaluation

Value

List: Hand ID, Dealer, Hand graphic, Hand points, Hand shape, vulnerability

Note

To change the hand evaluation pass high card values (HCValues) and shape values (shapeValues) in
the arguments.

HCValues is a string of five digits specifying the value of the Ace, King, Queen, Jack and 10.
The default is the Milton Work scale of 4, 3, 2, 1, 0. shapeValues is a string of eight digits spec-
ifying the value of a suit with no cards/"Void", 1-card/"Singleton", ... 7-cards. The default is
c(3, 2, 1, 0, 0, 1, 2, 3) Losing Trick Count (LTCSchema) ’Original’ or ’New’ as described at
https://en.wikipedia.org/wiki/Losing-Trick_Count. This assumes a fit will be found. It is currently
not implemented.

4 collectHands

Examples

Not run:
Produce a bridge hand
hand <- bridgeHand()

Produce a bridge hand '500' ensuring South as dealer
hand500 <- bridgeHand(handNumber = 500, seat = "S") # Seat can be any compass point

End(Not run)

collectHands collectHands

Description

Returns a list of hands that fit a requirement. Simple hands will most often give the required bids.
Complex hands, where a subsequent bid is made, may not fit the requirements, as other bids by
opponents or partner may be preferable to the desired bidding pattern.

Usage

collectHands(handType = "opener", num = 6, ...)

Arguments

handType Type of hands wanted

num Number of hands requested

... Other parameters to be passed to the find_ functions, e.g. HC_low, cardLen_low

Value

Tibble - One line per requested hand with hand ID, seat position and type of hand

Note

Each of the handTypes is a standard set of parameters. For example "NT" (alias "balanced") allows
12-14 points, a single doubleton and no 5-card majors and no 6-card minor. To change these pa-
rameters then optional parameters can be passed through the "...". The most common changes will
be to specify the low and high high-card range and the shortest allowed suit and longest allowed.
These are "HC_low" and "HC_high", "cardLen_low" and "cardLen_high" respectively.

Existing functions and key parameters are currently:

Single bids
HC_low HC_high cardLen_low cardLen_high

any 0 40 0 13
opener 12 40 0 13
1major 12 19 4 (Major) Any (Minor) 13

createGraphic 5

1NT 12 14 2 4
4441 12 40 1 4

strong 19 40 0 8
preempt2 5 10 0 6
preempt3 6 9 0 7

0 7
Complex bids 6 9 0 7

South West North East
1NT_LHOdouble 1NT X

1NT_LHObid 1NT Any
1NT_RHObid 1NT Pass Pass Any

1major_jacoby2NT 1major Pass 2NT(Jacoby)

Other parameters are also used, but individually assigned in the function.

Examples

Not run:
Collect the ids of 2 hands with any shape
hands <- collectHands(num = 2)
Collect 6 hands with opening points and a "4441" shape
hands <- collectHands(handType = "4441", num = 6)

Collect a weak no-trump hand, with a point range of 11 to 15
hands <- collectHands(handType = "weakNT", num = 1, HC_low = 11, HC_high = 15)

End(Not run)

createGraphic createGraphic

Description

Create the graphic of the hand

Usage

createGraphic(handNo, handN, handE, handS, handW, dealer, vuln, points)

Arguments

handNo The id of the hand

handN The North hand generated by bridgeHand

handE The East hand generated by bridgeHand

handS The South hand generated by bridgeHand

6 find_1major

handW The West hand generated by bridgeHand

dealer The hand to become South, the designated dealer

vuln The hand’s vulnerability

points The hand’s points

Value

ggplot graphic object

find_1major find_1major

Description

Return a bridge hand that will open 1 of a major

Assumes that a 5 card minor will be bid before 4 card major, except if "canape" set to TRUE, then
a 6 card minor will be opened before a 4 card major

Assumes a weak 1NT, so HC_low is the first point outside the range of 1NT.

Usage

find_1major(HC_low = 15, HC_high = 19, cardLen_min = 4, canape = FALSE)

Arguments

HC_low The minimum number of high-card points

HC_high The maximum number of high-card points, otherwise 2-level bid is possible

cardLen_min The minimum number of cards in the major

canape Whether a 4 card major will be opened before a 5 card minor

Value

id and seat of compliant hand

find_1major_jacoby2NT 7

find_1major_jacoby2NT find_1major_jacoby2NT

Description

Find hands where South opens one of a major, and North will bid 2NT, to show 4 card support and
points for game

Usage

find_1major_jacoby2NT(HC_low = 13, cardLen_low = 4)

Arguments

HC_low The minimum number of high-card points

cardLen_low The minimum length of a suit

Value

id and seat of a compliant hand

find_2preempt find_2preempt

Description

Find hands that are likely to preempt at the 2 level in a major

Usage

find_2preempt(HC_low = 5, HC_high = 10, cardLen_low = 6, cardLen_high = 7)

Arguments

HC_low The minimum number of high-card points

HC_high The maximum number of high-card points

cardLen_low The minimum length of a suit

cardLen_high The maximum length of a suit

Value

id and seat of compliant hand

8 find_4441

find_3preempt find_3preempt

Description

Find hands that are likely to preempt at the 3 level

Usage

find_3preempt(HC_low = 5, HC_high = 10, cardLen_low = 7, cardLen_high = 8)

Arguments

HC_low The minimum number of high-card points

HC_high The maximum number of high-card points

cardLen_low The minimum length of a suit

cardLen_high The maximum length of a suit

Value

FALSE if not compliant, or id and seat of compliant hand

find_4441 find_4441

Description

Find hands that comply with a 4441 shape and opening point count

Usage

find_4441(HC_low = 12, HC_high = 35, cardLen_low = 5, cardLen_high = 13)

Arguments

HC_low The minimum number of high-card points

HC_high The maximum number of high-card points

cardLen_low The minimum length of a suit

cardLen_high The maximum length of a suit

Value

id and seat of compliant hand

find_any 9

find_any find_any

Description

Return any bridge hand - May not be an opener

Usage

find_any()

Value

id and seat of compliant hand

find_opener find_opener

Description

Return a bridge hand that is likely to open

Usage

find_opener(HC_low = 12)

Arguments

HC_low The minimum number of high-card points

Value

id and seat of compliant hand

10 find_strongNT

find_strong find_strong

Description

Find hands that are strong enough to open strong

Usage

find_strong(HC_low = 19, HC_high = 35, cardLen_low = 1, cardLen_high = 5)

Arguments

HC_low The minimum number of high-card points

HC_high The maximum number of high-card points

cardLen_low The minimum length of a suit

cardLen_high The maximum length of a suit

Value

id and seat of compliant hand

find_strongNT find_strongNT

Description

Find hands that comply with a weak no trump opening

Usage

find_strongNT(HC_low = 15, HC_high = 17, cardLen_low = 2, cardLen_high = 5)

Arguments

HC_low The minimum number of high-card points

HC_high The maximum number of high-card points

cardLen_low The minimum length of a suit

cardLen_high The maximum length of a suit

Value

id and seat of compliant hand

find_weak1NT_LHObid 11

find_weak1NT_LHObid find_weak1NT_LHObid

Description

Find hands where South will open a weak 1NT and West will likely bid

Usage

find_weak1NT_LHObid(HC_low = 7, cardLen_low = 6)

Arguments

HC_low The minimum number of high-card points

cardLen_low The minimum length of a suit

Value

id and seat of a compliant hand

find_weak1NT_LHOx find_weak1NT_LHOx

Description

Find hands where South will open a weak 1NT and West will likely double

Usage

find_weak1NT_LHOx(
HC_low = 12,
HC_high = 14,
cardLen_low = 2,
cardLen_high = 5,
pointsForDouble = 15

)

Arguments

HC_low The minimum number of high-card points

HC_high The maximum number of high-card points

cardLen_low The minimum length of a suit

cardLen_high The maximum length of a suit
pointsForDouble

Minimum number of points for West to double

12 find_weakNT

Value

id and seat of a compliant hand

find_weak1NT_RHObid find_weak1NT_RHObid

Description

Find hands where South will open a weak 1NT, East and North with pass, and West will likely bid

Usage

find_weak1NT_RHObid(HC_low = 7, cardLen_low = 6)

Arguments

HC_low The minimum number of high-card points

cardLen_low The minimum length of a suit

Value

id and seat of a compliant hand

id and seat of a compliant hand

find_weakNT find_weakNT

Description

Find hands that comply with a no trump opening

Usage

find_weakNT(HC_low = 12, HC_high = 14, cardLen_low = 2, cardLen_high = 4)

Arguments

HC_low The minimum number of high-card points

HC_high The maximum number of high-card points

cardLen_low The minimum length of a suit

cardLen_high The maximum length of a suit

Value

id and seat of compliant hand

printHands 13

printHands printHands

Description

Produce a page of bridge hands as a PDF. Each page can hold up to 6 hands, and can show all seats
or one of the seats can be selected through the ’outputSeats’ parameter.

• "FULL" or "F" - Show all seats.

• "N" / "E" / "S" / "W" - Show only the specified seats on separate outputs. e.g. "NS" to generate
North and South seats.

• "ALL" or "A" - Equivalent to "FNEWS", i.e. Separate pages of each of the four seats, and one
page with all seats.

In all cases, only point counts for the selected seats will be visible.

The output PDFs will be saved to a temporary directory, but a directory can be specified in the
’saveOutput’ parameter.

Usage

printHands(
ids = FALSE,
seats = FALSE,
handType = "any",
num = 12,
outputSeats = "F",
saveOutputDir = FALSE,
...

)

Arguments

ids The ids of hands to be generated

seats The seats of the hands in ids, i.e. the seat which gives the requested conditions,
this will become South when printed

handType The type of hand required, default is ’any’. Alternatives include, ’4441’, ’strong’,
...

num The number of hands wanted

outputSeats Character code of required seats, "N", "E", "S", "W" and "F" for the full hand
NB "ALL" equivalent to "FNEWS"

saveOutputDir If FALSE (Default) will save to temporary directory, or specify a directory, e.g.
"c:/temp/bridger"

... Other variables that may be passed when selecting compliant hands

14 suitSplit

Value

Text message, confirming completion and specifying location of PDF outputs

Examples

Not run:
Produce a hand showing all seats and save them to 'c:/temp/bridger' directory
printHands(handType = "any", num = 1, outputSeats = "FULL", saveOutput = FALSE)
Produce a page of 6 hands likely to open with a 3-level preempt, only showing the South seat
printHands(handType = "preempt3", num = 6, outputSeats = "S")

Produce the specified hands, showing all seats
printHands(ids = c(500, 501, 502), seats = c("E", "W", "S"), outputSeats = "FULL")

End(Not run)

suitSplit suitSplit

Description

Provides the probabilities with with a number of cards will split between two hands, given a number
of unknown cards in each hand. Unknown hands are assumed to be West and East.

If there is no information to indicate different numbers of unknown cards in both hands, then sym-
metrical probabilities will be returned. However, if one hand is expected to have a different number
of cards to the other, then these can be specified. For example, if during the bidding East overcalled
in spades, indicating a 5 card suit, then when looking at hearts, East has fewer cards. While the
number of assumed cards in West’s hand is 13 (’cards_W = 13’), the assumed cards in East should
be reduced to 8 (’cards_E = 8’)

Usage

suitSplit(missingCards = 5, cards_W = 13, cards_E = 13)

Arguments

missingCards The number of cards held by the two hands
cards_W Cards in West hands
cards_E Cards in East hands

Value

Tibble of probabilities

Examples

suitSplit(missingCards = 6, cards_W = 13, cards_E = 8)

Index

.onLoad, 2

bridgeHand, 3

collectHands, 4
createGraphic, 5

find_1major, 6
find_1major_jacoby2NT, 7
find_2preempt, 7
find_3preempt, 8
find_4441, 8
find_any, 9
find_opener, 9
find_strong, 10
find_strongNT, 10
find_weak1NT_LHObid, 11
find_weak1NT_LHOx, 11
find_weak1NT_RHObid, 12
find_weakNT, 12

printHands, 13

suitSplit, 14

15

	.onLoad
	bridgeHand
	collectHands
	createGraphic
	find_1major
	find_1major_jacoby2NT
	find_2preempt
	find_3preempt
	find_4441
	find_any
	find_opener
	find_strong
	find_strongNT
	find_weak1NT_LHObid
	find_weak1NT_LHOx
	find_weak1NT_RHObid
	find_weakNT
	printHands
	suitSplit
	Index

